WEST VIRGINIA DIVISION OF HIGHWAYS

CONTROL STRIP CORE DENSITIES AND NUCLEAR GAUGE CORRECTION FACTOR CORE DENSITY TESTED USING STANDARD TEST METHOD (AASHTO T166)

Laboratory #	<u> </u>		Proj./Auth. Number				Mix Type					
Mix Design #	Technician					Date		Target Density (J)				
Test Location Number	Offset	Weight in Air (A)	Wt. Saturated Surface Dry (B)	Weight in Water (C)	Absorption $\left(\frac{B-A}{B-C}\right) \times 100$	Spec. Gravity = A / (B - C) (D)	= D	ty (kg/m³) x 1000 (E)		ear Gauge ling (kg/m³) (F)	Difference = E - F (kg/m³) (±) *	
					Avera	ge Density =	G		Н			
Total Number of Cores Used for Correction Factor					Correction Factor = Average Difference (kg/m³) = G - H							
Contractor	r Gauge Strip Density fr	om cores =	* Note that this average may be based on values % Pass/Fail that are both positive and negative numbers.									
22			(G X 100) /	-	-			10		,		

Attach this form to T-426, Control Strip Density Gauge Readings. Both forms will use the same laboratory number and represent the control strip density.